February 19, 2011

How Brains Are Built: Principles of Computational Neuroscience

From The Dana Foundation:

Editor’s note: The goal of computational neuroscience is to understand the brain and its mechanisms well enough to artificially simulate their functions. In some areas, like hearing, vision, and prosthetics, there have been great advances in the field. Yet there is still much about the brain that is unknown and therefore cannot be artificially replicated: How does the brain use language, make complex associations, or organize learned experiences? Once the neural pathways responsible for these and many other functions are fully understood and reconstructed, researchers will have the ability to build systems that can match—and maybe even exceed—the brain’s capabilities.

“If I cannot build it, I do not understand it.” So said Nobel laureate Richard Feynman, and by his metric, we understand a bit about physics, less about chemistry, and almost nothing about biology.1

When we fully understand a phenomenon, we can specify its entire sequence of events, causes, and effects so completely that it is possible to fully simulate it, with all its internal mechanisms intact. Achieving that level of understanding is rare. It is commensurate with constructing a full design for a machine that could serve as a stand-in for the thing being studied.  To understand a phenomenon sufficiently to fully simulate it is to understand it computationally.

“Computation” does not refer to computers per se; rather it refers to the underlying principles and methods that make them work. As Turing Award recipient Edsger Dijkstra said, computational science “is no more about computers than astronomy is about telescopes.”2 Computational science is the study of the hidden rules underlying complex phenomena from physics to psychology.

Computational neuroscience, then, has the aim of understanding brains sufficiently well to be able to simulate their functions, thereby subsuming the twin goals of science and engineering: deeply understanding the inner workings of our brains, and being able to construct simulacra of them. As simple robots today substitute for human physical abilities, in settings from factories to hospitals, so brain engineering will construct stand-ins for our mental abilities—and possibly even enable us to fix our brains when they break.

Read the rest of the article.

1 Comment »

  1. Brain is a complex biological mechanism, and while its functions can be DESCRIBED in computational terms, its efficacy resides in its biological machinery. With all the advances in the scale, complexity, and performance of computers and robotic devices, I have yet to see an artifact that exhibits a coherent global analog of a volumetric space organized around a fixed perspectival locus of origin. This kind of internal representation is essential in order to have a brain that can be said to have phenomenal content. For a more detailed discussion of this topic see here:

    http://people.umass.edu/trehub/YCCOG828%20copy.pdf

    Comment by trehub — February 20, 2011 @ 11:18 am

RSS feed for comments on this post. TrackBack URI

Leave a comment

Line and paragraph breaks automatic, e-mail address never displayed, HTML allowed: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>